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I. ANALYTICAL TREATMENT OF THE MEAN FIELD

The separation of the quantum Langevin equations result in
the dynamics for the mean fields

α̇ =

{
−i
[

∆−
N

∑
j=1

gjR(β j)

]
− κ

2

}
α + E0T e−iφ0 ,

β̇ j = −
(

iΩj +
Γj

2

)
β j + igj|α|2, (1)

complementary to the fluctuations in Eq. (2) of the main text.
The periodically modulated drive T (t) = ∑k Tke−ikΩmodt

(k ∈ Z) turns the differential equations into a periodic ones
and admits a Floquet ansatz such that we express α as a
truncated Fourier series α(t) = ∑n αne−inΩmodt with n ∈
{−D, ..., D} and find that Eq. (1) reduces to the dynamical
system

α̇m =E0Tm − χ̃−1
cav,mαm + ∑

(p,q)
χ−1

cub,qαpα∗p−qαm−q, (2)

where p ∈ {−D, ..., D}, q ∈ {−D + p, ..., D + p}, and
the solutions of the mechanical mean fields β j(t) follow from
their solutions in Fourier space

β j(t) =
igj

2π

∫
dω

|α̃|2(ω)

i(ω−Ωj)− (Γj/2)
e−iωt, (3)

with |α̃|2(ω) = ∑(p,q) αpα∗p−qδ(ω − iqΩmod). Here,

we defined χ̃−1
cav,m = i(∆ − mΩmod) +

κ
2 , and χ−1

cub,q =

∑j χ−1
OM,j(qΩmod), with χ−1

OM,j(ω)/g2
j = [i(ω − Ωj) −

Γj
2 ]
−1 − [i(ω + Ωj)−

Γj
2 ]
−1. The steady state ᾱm, which is

the basis of the Floquet treatment of the fluctuations in Eq. (3)
of the main text has to be found by solving α̇m = 0. This task
constitutes the solution of 2D + 2 coupled real cubic equa-
tions which can be done analytically for D = 0 employing
methods from algebraic geometry and has to be done numeri-
cally beyond D = 0.

II. TRANSFER CHARACTERISTIC OF INTENSITY
MODULATION

The optical intensity modulation underlying the theoreti-
cal description is based on the imbalanced single-drive Mach–
Zehnder modulator depicted in Fig. 1(a). Our discussion fol-
lows the descriptions of [1, 2]. It consists of a Mach–Zehnder

interferometer realized with two waveguides and an electro-
optic phase modulator implemented in one waveguide. The
output field of such a Mach–Zehnder modulator is given by

Eout(t) =
Ein(t)eiφ0

2
(
1 + eiφmod(t)

)
(4)

where Ein is the input field and φ0 an input phase off-
set. The electro-optic phase modulator causes the phase-shift
φmod(t) = πV(t)/Vπ when a voltage V(t) is applied, where
Vπ is a characteristic of the modulator. The intensity transfer
characteristic for Ein(t) = E0eiωLt is

Iout

E2
0

=
2 + eiφmod(t) + e−iφmod(t)

2
= cos2

(
φmod(t)

2

)
(5)

and enables its use for intensity modulation at the operating
point OPI for V(t) ≈ −Vπ

2 as suggested by Fig. 1(b). Assum-
ing sinusoidal modulation V(t) = −Vπ

2 + dVπ
π cos(Ωmodt)

around voltage −Vπ/2 with modulation depth d we write the
transfer function

T (t) = Eout(t)
Ein(t)

=
eiφ0

2
(
1 + e−

iπ
2 +id cos(Ωmodt)). (6)

The field transfer characteristic can be described in terms of
the Bessel functions of the first kind Jn using the Jacobi-
Anger expansion

T (t)
eiφ0

=
1− iJ0(d)

2
+

∞

∑
n=1

in+1Jn(d) cos(nΩmodt), (7)

which signifies that applying a low modulation depth d al-
lows to cut off after the first time-dependent contribution. The
Fourier components of Eq. (7) act as the driving terms Tm in
Eq. (4) of the main text. To ensure the validity of this cut-off,
we compare the analytical intensity transfer function in Eq. (5)
with the approximation resulting from truncating Eq. (7) after
n = 1 in Fig. 1(c) in the parameter regime used in theory as
well as the experiment. We note that one cannot indefinitely
increase the modulation depth d to increase |ᾱ±1|2 and con-
sequently the coupling related with σ

(0)
jl±1σ

(±1)
jl0 because the

power will then be used to create sidebands |ᾱ±n|2 at the fre-
quencies ωL ± nΩmod with n > 1.

III. RAMAN PICTURE DESCRIPTION

With the aim to provide further insight in the working prin-
ciple of the stimulated emission processes, we first inspect the
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FIG. 1. Schematic description of a Mach–Zehnder intensity modu-
lator. (a) Schematic diagram of a Mach–Zehnder interferometer and
an electro-optic phase modulator implemented in one optical waveg-
uides. (b) Resulting intensity transfer characteristic as a function
of the applied voltage V on the electro-optic phase modulator. (c)
Comparison of the intensity transfer function (solid) with the low-
est order approximation (dashed) for periodic modulation with low
modulation depth d.

effective decay rate including the process σ
(0)
jj0 (Ωj) but with-

out periodic drive

Γ′j = Γj +
4κg2

j |ᾱ0|2∆̄Ωj

[ κ2

4 + (Ωj − ∆̄)2][ κ2

4 + (Ωj + ∆̄)2]
. (8)

An example in the resolved sideband regime (κ < Ωj) is
shown in Fig. 2(a) which illustrates that the initial phonon de-
cay rate Γj can be counteracted by a phonon production pro-
cess that is maximal for an effective detuning ∆̄ = ωop −
ωL = −Ωj. This means that the phonon production is most
effective if drive photons entering the cavity carry the exact
amount of excess energy E = h̄(ωL −ωop) that is associated
with one phonon Ej = h̄Ωj, indicating that energy conserva-
tion of incoming and outgoing particles is the requirement for

the process. Therefore, we can visualize stimulated emission
processes in an energy diagram with arrows pointing upwards
as incoming particles and arrows pointing downwards as out-
going particles, as depicted in Fig. 2(b) and (c). The stan-
dard stimulated emission process displayed in Fig. 2(b) can
be visualized by an incoming photon (ᾱ0) and a (stimulating)
phonon b̂j which can be used to break down the photon into
a resonant photon at the optical frequency and two phonons
b̂j that inherit the phase from the stimulating phonon. Energy
conservation of this process requires that the photon carries
the excess energy of one phonon ∆̄ = −Ωj.

The collaborative stimulated emission process
σ
(0)
121σ

(1)
120(Ωj) that is relevant for phase locked multi-

mode oscillation in the numerical example is illustrated in
Fig. 2(c). This process is associated with the decay rate alter-
ation Eq. (6) in the main text. In the presence of modulation,
the cavity is driven with carrier photons (ᾱ0) at frequency ωL
that carrying excess energy ∆̄ = −Ω1 as well as by photons
in the modulation sidebands whose frequencies ωL ± Ωmod
are either diminished (ᾱ−1) or augmented (ᾱ1) from the
carrier frequency by the modulation frequency Ωmod. A new
process can be recognized that can be broken down into two
subcycles:

1. The sideband photons (ᾱ1) can be broken down by a
stimulating phonon of mode 1 (b̂1) into a resonant pho-
ton and a new phase-locked phonon of mode 2 (b̂2).
This process conserves energy if the photon’s excess
energy −h̄(∆̄ − Ωmod) equals the energy h̄Ω2 of a
phonon in mode 2 which yields a condition for the mod-
ulation frequency Ωmod = Ω2 + ∆̄. Considering a cen-
tral detuning ∆̄ = ωop − ωL = −Ω1 this results in
modulating at the difference of the mechanical frequen-
cies Ωmod = Ω2 −Ω1 ≡ δΩ.

2. This phase-locked phonon of mode 2 can in turn be used
in a subsequent step to generate a new phonon of mode
1. This step requires a drive photon (ᾱ0) with excess
energy −h̄∆̄ = h̄Ω1 and the phase locked phonon in
mode 2 (b̂2) to break down into a resonant photon and
a phase locked phonon in mode 1 (b̂1) which can act as
a stimulating phonon in the next cycle.

In total, we require one drive photon in the optical mode
ᾱ0, one drive photon in the optical mode ᾱ1, and one stim-
ulating phonon in b̂1 (e.g. thermal noise) to generate a new
pair of phase locked phonons in the mechanical modes 1
and 2. This process can be attributed to the additional term
σ
(0)
121σ

(1)
120/[(δΩ − Ωmod) + i(Γ2/2) + σ

(1)
121] which appears

in Eq. (6) of the main text. The collaborative stimulated
emission requires that the driving occurs at the difference fre-
quency and both stimulated emission processes are occurring
with maximal rates for the effective detuning ∆̄ = −Ω1 in
this example. Therefore, adjusting the modulation frequency
with optimal detuning only enables the collaborative stimu-
lated emission process while the standard stimulated emission
is already active. However, adjusting the detuning with an op-
timal modulation enables both stimulated emission processes
simultaneously. We note that similar processes occur starting
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ᾱ0

b̂j

b̂j

b̂j

σ
(0)
jj0

(b)

ω

ωL

ωop

Ω2
Ω1

Ωmod

Ωmod−∆̄
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FIG. 2. Schematic diagrams of self-sustained oscillation (SSO) and
multi-mode oscillation (MMO). (a) Effective phonon decay rate Γ′j
of a sideband resolved optomechanical system as a function of the
effective detuning ∆̄. The initial decay rate Γj is corrected by an-
other process which can enhance or decrease the decay. If the drive
photons’ frequency ωL exceed the optical cavity frequency ωop by
the frequency of a mechanical mode Ωj the decay rate is minimal,
indicating energy conservation as a requirement for stimulated emis-
sion (b) Schematic diagram based on energy conservation for self-
sustained oscillation. In presence of a noise phonon of mode b̂j, a
photon with the correct excess energy h̄Ωj can be broken down into
a resonant photon and an additional phonon in the mode b̂j sharing
the phase of the original phonon. (c) Schematic diagram based on
energy conservation for multi-mode oscillation. The intensity mod-
ulation generates photons with frequencies diminished (ᾱ−1) or aug-
mented (ᾱ1) by the modulation frequency ωmod from the central laser
frequency ωL taken to be ωop + Ω1. The initial step of the multi-
mode lasing process breaks an augmented frequency photon (ᾱ1) in
presence of a noise phonon b̂1 down into a resonant photon and a
phase locked phonon b̂2 in mode 2. This step is energy conserved
if the modulation frequency is the difference of the mechanical fre-
quencies δΩ = Ω2 − Ω1. In the second step, this phase-locked
phonon breaks up a photon (ᾱ0) with the central frequency ωL into a
resonant photon and a phase locked phonon b̂1 in mode 1.

from a noise phonon in mode 2 at detuning ∆̄ = −Ω2 in-
volving the other modulation sideband, all resulting in phase-
locked generation of phonon pairs in the two modes.

IV. MUSICAL DESCRIPTION AND AURAL EVIDENCE
OF MULTIMODE LASING

Another way of appreciating that a modulated drive can
lead to phase locked oscillations at distinct frequencies can
be drawn from music and more concretely from considering
a conductor in charge of leading two groups. The natural fre-
quencies of the mechanical modes in the numerical demon-
stration were chosen at a ratio Ω2/Ω1 = 1.339 ≈ 4/3 such
that coherent phase-locked oscillations can be identified with
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FIG. 3. A 4/3 polyrhythm as the musical analogon of multi mode
lasing. (a) We show the mechanical traces in the MMO state from
Fig. 1(d) of the main text with the main vertical grid lines showing
steps of Ω̃2 and therefore following the maxima of β2 and the red
dashed lines showing steps of Ω̃1 following the maxima of β1. Since
the ratio of the frequencies is roughly 4/3 we expect that β1 roughly
completes 3 oscillations in the time that β2 needs for 4 oscillations.
(b) Musical notation of the 4/3 polyrhythm in which the lower voice
plays three quarters in a three quarter measure such that the notes
occur with a frequency of 3 Hz if there are 180 beats per minute.
The higher voice plays four dotted eighth notes occuring with a fre-
quency of 4 Hz which fit in the same measure. Additionally the lyrics
indicate a mnemonic whose natural rhythm follows the rhythmical
pattern. A potential conductor would indicate the beginning of each
measure, coinciding with the syllable LOCK in both voices. This
means that the conductor gives a sign to the two voices indicating
the beginning of the measure occuring with a frequency 1 Hz which
is the difference of 4 Hz and 3 Hz.

a so-called 4/3 polyrhythm as visualized in Fig. 3. A conduc-
tor usually indicates the beginning of a measure which is the
smallest cyclic pattern of a musical piece. A measure is subdi-
vided into pulses and here we assume a three quarter measure,
i.e. a subdivision into three equal pulses. If a measure takes up
one second, then each pulse takes up a third of a second. How-
ever, it is possible for a second voice to play four equidistant
notes in the same time which are so-called dotted eighths and
take up a quarter second each. This fits completely with our
example since the two voices repeating notes at a frequency of
3 and 4 Hz are conducted by signs indicating a phase to lock
to at the difference of these frequencies, namely at 1 Hz, like
the conductor indicating the start of each measure. To vali-
date the existence of multiple distinct frequencies in the os-
cillations of the mechanical modes, we use the displacement
of the numerical simulations as seen in Fig. 1 of the main text
to generate sound files. These result in a noisy tone for the
thermal state, a single clear tone in the SSO state and in a
two-tone chord in the MMO state. Since the natural frequen-
cies are chosen approximately in a 4/3 ratio we expect to hear
a so-called suspended fourth chord in the MMO state. We
generated the sound files available as part of the supplemental
material to certify oneself.
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V. NUMERICAL ANALYSIS PROCEDURE AND PHASE
DIAGRAM

We generate sample trajectories of our model such as those
depicted in Fig. 1 of the main text by employing the Euler–
Maruyama scheme [3] for the dynamics of the mean fields

α̇ =

{
−i
[

∆−
N

∑
j=1

gjR(β j)

]
− κ

2

}
α + E0T e−iφ0 + ξα(t),

β̇ j = −
(

iΩj +
Γj

2

)
β j + igj|α|2 + ξβ j(t), (9)

where we choose the parameters of the two mechanical modes
(N = 2) as described in the main text, namely Ω1 = 5.3,
Γ1/Ω1 = 0.16, g1 = 0.80, Ω2 = 7.1, Γ2/Ω2 = 0.10,
g2 = 1.1 as well as the optical cavity ∆ = −6.1, and κ = 3.
This places the numerical example in the resolved sideband
region such that only the collaborative stimulated emission
process in Fig. 2(c) contributes and the similar process start-
ing from a noise phonon in mode 2 mentioned above is sup-
pressed. We keep all parameters within two orders of mag-
nitude because stiff stochastic differential equations, having
parameters varying over several orders of magnitude, cannot
easily be simulated numerically. The Gaussian noise terms we
employ are described by their statistical momenta, i.e. their
mean 〈ξs(t)〉 = 0 taken to be zero thoughout the analysis
and time correlation 〈ξr(t)ξs(t′)〉 = δrsλsδ(t − t′) for all
2(N + 1) variables r and s denoting the real Re(z) = R(z)/2
and imaginary Im(z) = I(z)/2 parts of α and β j with the
variance of the Gaussian noise λs gauging the strength of
the random forces. In order to generate realistic initial con-
ditions of the system, we evolve the system starting from
rest α(t = −t0) = β j(t = −t0) = 0 and without drive
(E0 = 0) for an initial period of t0 = 100 ·Ω2/(2π) ≈ 115
oscillation periods of Ω2 emulating cavity shot noise, i.e.
〈ξr(t)ξs(t′)〉 = (δRe(α)r + δIm(α)r)δrsδ(t − t′). Note, that
we neglect the equivalent quantum noise of the mechanical
oscillator in the ground state because we aim to explore self-
oscillating attractors of the nonlinear dynamics with the least
energy possible in the system at initial time t = 0. After
the initial procedure to thermalize the system, we then drive
with E0 = 8.9, leading to ∆̄ ≈ −Ω1, and phonon noise
〈ξr(t)ξs(t′)〉 = 0.01 ∑j(δRe(β j)r + δIm(β j)r)δrsδ(t − t′) to
probe the stability of the attractor for 1000 ·Ω2/(2π) ≈ 1150
oscillation periods of Ω2. The step size δt = 0.0001 through-
out every simulation is chosen to be such that we have ap-
proximately 11500 sample points per oscillation period of Ω2
in order to numerically converge. We conducted a larger pa-
rameter scan of the modulation depth d and the modulation
frequency Ωmod to understand the effects of the modulated
drive. The numerical parameters are identical to the examples
shown in Fig. 1 of the main text, apart from the modulation
depth which is scanned from 0 to 0.1 in steps of 0.005, and
the modulation frequency which is swept from 0 to 3 in steps
of 0.05. The results are summarized in Fig. 4. The classi-
fication of a simulation into a thermal state (black square),
self-sustained oscillation of one mode (blue square) or mul-

timode oscillation (red square) is based on the Fourier spec-
tra of the mechanical displacements Re(β j) which were com-
puted for 980 ·Ω2/(2π) ≈ 1100 oscillation periods of Ω2.
A simulation is classified as a thermal state if that all am-
plitudes in the range of ω between 4 and 10 are below the
threshold value 1010 which can be seen in the inset of Fig
1.(b). Self-oscillation and multimode oscillation are related to
a rise of the amplitude for either one or both mechanical dis-
placements around their natural frequency above the thresh-
old value 1011. In addition, to classify a simulation as mul-
timode oscillation, the maximal amplitude in the spectrum of
the mechanical displacement of β2 needs to be in the inter-
val between 6 and 8 and a fit of the logarithm of a Lorentzian
function f (ω) = ln(S̃0 + a[(ω− Ω̃2)

2 + (Γ′2/2)]−1) to the
logarithm of the Fourier spectrum in that range results in a
narrowed linewidth of Γ′2 < Γ2/2 while keeping the fre-
quency Ω̃2 = 6.8 fixed. We see that increasing the modu-
lation depth takes the system below laser threshold for low
modulation frequencies. This can be understood since the to-
tal power that exits the Mach–Zehnder modulator is constant
independent of the modulation depth and some of the power is
taken from the main tone at ωL to generate the two sidebands
at ωL ± Ωmod, which are not optimally detuned to generate
lasing. If the modulation frequency is swept towards the dif-
ference frequency we see that the additional stimulated emis-
sion process first helps one mode to overcome the oscillation
threshold and at the difference frequency and beyond the sec-
ond mode also surpasses the threshold. The time requirements
of the numerical algorithm limit the amount of simulations
considered per data point leading to statistical fluctuations in
the phase diagram. The white stars denote the modulation pa-
rameters for the shown simulations in Fig. 1 of the main text.

VI. QUALITATIVE DESCRIPTION OF HYSTERETIC
BEHAVIOUR

The experimentally realized behavior of the multimode
phonon lasing system shows hysteresis with the result that
the MMO state can only be reached from the thermal steady
state and not from one of the single-mode self-sustained
oscillation states (SSO). The two experimental parameters
which have to be controlled to achieve resonance in the
correct order are the modulation frequency Ωmod and the
laser frequency which controls the detuning ∆̄. We find
that the modulation frequency needs to be tuned to match
the difference frequency first such that the collaborative pro-
cesses σ

(0)
121σ

(1)
120(Ω1) and σ

(0)
12−1σ

(−1)
120 (Ω2) are enabled be-

fore the detuning ∆̄ is tuned into resonance such that the
four relevant stimulated emission processes σ

(0)
121σ

(1)
120(Ω1),

σ
(0)
12−1σ

(−1)
120 (Ω2), σ

(0)
110σ

(0)
110(Ω1), and σ

(0)
220σ

(0)
220(Ω2) are max-

imized altogether. If the detuning is tuned towards res-
onance without active intensity modulation the processes
σ
(0)
110σ

(0)
110(Ω1) and σ

(0)
220σ

(0)
220(Ω2) lead to the mode competition

mechanism which will end in the self-sustained oscillation of
one mode only. Enabling the collaborative stimulated emis-
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FIG. 4. Two-dimensional parameter scan of the modulation depth d
and modulation frequency Ωmod. For low modulation depths we find
that the system goes into single mode self-sustained oscillation. In-
creasing the modulation depth for off-resonant modulation frequen-
cies Ωmod � Ω2 −Ω1, the system is taken below the lasing thresh-
old. For resonant modulation frequencies Ωmod ≈ Ω2 −Ω1 we find
multimode self-sustained oscillations. The fluctuations in the dia-
gram are of statistical nature due to numerical constraints. The white
stars denote the driving conditions taken for the simulations in Fig. 1
of the main text.

sion effects afterwards will not generate a flow into the MMO
states basin of attraction which is strong enough to attract the
system into the MMO state from the self-sustained oscillation
attractors. The situation can be summarized in a commutative
diagram as sketched in Fig. 5. The top left panel describes
the situation for the initial parameters of the experiment. It
allows for the thermal steady state as well as the distinct SSO
states. Thermal fluctuations will randomize the initial condi-
tion around the thermal attractor such that instead of a singu-
lar point, we need to consider the probability distribution of
initial states which is symbolized by the green and red disk
around the thermal attractor. If neither the detuning nor the
modulation frequency are resonant, the distributions are en-
tirely enclosed in the thermal state’s basin of attraction. If
we follow the commutative diagram in the counter-clock wise
direction, we follow the evolution of the green disc. It fol-
lows the dynamical flow under the change of the modulation
frequency first. Since we enable the higher order (∝ g2

j g2
l )

processes σ
(0)
121σ

(1)
120(Ω1) and σ

(0)
12−1σ

(−1)
120 (Ω2), the basin of

attraction of the thermal state will only shrink weakly com-
pared to the other processes (∝ g2

j ) but it will generate the
additional MMO attractor. Resonantly modifying the detun-
ing will destabilize the thermal attractor and the green disk
will flow partly to the MMO state. If we exchange the order
and follow the commutative diagram in the clock-wise direc-
tion we follow the evolution of the red disc. Here, the de-

tuning is turned into resonance such that the thermal attractor
is destabilized immediately. However, the higher order pro-
cesses are off-resonant and therefore suppressed such that the
standard mode-competition setting holds. The red disc flows
partly into each SSO attractor. Tuning the modulation fre-
quency into resonance now will create the MMO attractor but
its basin of attraction is too far away for thermal fluctuations
around the SSO states to enable flow into the MMO state.

VII. THE ROLE OF THE OPTICAL SPRING EFFECT IN
FREQUENCY STABILITY

One effect that could play a role in the observed frequency
stabilization in the MMO state is related to fluctuations trans-
duced through the optical spring effect. To understand this in
more detail, consider the central frequency corrected by the
optical spring shift to Ω′j due to the process σ

(0)
jj0 (Ωj) which

is found to be

Ω′j(Ωj) = Ωj

√√√√1−
∆̄g2

j |ᾱ0|2[ κ2

4 −Ω2
j + ∆̄2]

Ωj[
κ2

4 + (Ωj − ∆̄)2][ κ2

4 + (Ωj + ∆̄)2]
.

(10)

Observing that |Ω′j −Ωj| � Ωj, we apply the Taylor expan-

sion
√

1− ax2 ≈ 1− ax2

2 leading to the approximated central
frequency

Ω′j(Ωj) ≈ Ωj −
∆̄g2

j |ᾱ0|2[ κ2

4 −Ω2
j + ∆̄2]

2[ κ2

4 + (Ωj − ∆̄)2][ κ2

4 + (Ωj + ∆̄)2]
.

(11)

A change of laser intensity |ᾱ0|2 by an amount δI leads to a
change of the mechanical frequency

δΩ′j = −
∆̄g2

j [
κ2

4 −Ω2
j + ∆̄2]

2[ κ2

4 + (Ωj − ∆̄)2][ κ2

4 + (Ωj + ∆̄)2]
δI. (12)

As such, laser intensity fluctuations, either quantum fluctua-
tions or classical fluctuations related to the laser or the tapered
optical fiber, could affect the stability of the mechanical res-
onator through the induced optical spring shift. Moreover, un-
certainty in other quantities such as the detuning ∆̄ contributes
with additional error. The thermo-optic effect, which leads to
laser-induced cavity red-shift in the silicon nanocavities we
employ, stabilizes fluctuations in intensity and detuning only
to a finite degree. The magnitude of the resulting spring shift
depends on the mean intracavity photon number. A reduction
of the intracavity photon number as suggested by the theoret-
ical finding that the lasing threshold power is lowered by the
modulation as seen in the phase diagram, and the observed re-
duction of the peaks in the experimental spectra in the MMO
state, are consistent with the hypothesis that this mechanism
contributes to the observed stabilization.
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FIG. 5. Commutative diagram sketch encompassing the experimen-
tally realized lasing behaviour. The initial parameters in the top left
panel allow for a thermal steady state (“Thermal”), delineated by
the blue line, and self-sustained oscillation of each mechanical mode
(“SSO1” and “SSO2”). Thermal fluctuations lead to the distribution
of the initial condition described by the green and red disk. Going
counter-clockwise to the final state in the bottom right corner shows
how to create the MMO state. First adjusting the modulation fre-
quency creates the MMO attractor in the middle of the panel without
destroying the thermal attractor. Turning the detuning into resonance
then sets the initial probability distribution into motion following the
flow with the possibility to be drawn into the MMO’s basin of attrac-
tion. Going clockwise to the final state, i.e., following the red path,
shows that tuning the detuning toward resonance immediately de-
stroys the thermal state forcing the oscillators into either SSO attrac-
tor as in the mode competition setting. Creating the MMO attractor
afterwards cannot pull the probability distributions of the final state
into its basin of attraction.

VIII. EXPERIMENTAL SETUP

The measurements were performed with the experimental
setup illustrated in Fig. 6. Two similar setups were installed
(independently) at the AMOLF institute in the Netherlands
and the Nanophotonics Technology Center (NTC) in Spain,

where different compatible and reproducible sets of measure-
ments were obtained. All the measurements presented in this
work were taken on the same optomechanical crystal cavity
sample. A tunable fiber-coupled external cavity diode laser
(New Focus TLB-6728) generates a continuous-wave opti-
cal signal that passes through an intensity modulator fed by
a signal generator (SG) with a tuneable modulation frequency
ωRF. In both setups the used intensity modulator was a Cov-
ega Mach MZM and the SG was an EXG Analog Signal Gen-
erator N5173B at AMOLF and an Agilent E4438C ESG Vec-
tor Signal Generator at NTC. The modulated laser signal is
passed through an erbium doped fiber amplifier (EDFA), a
polarization controller (PC), and an optical circulator before
it is sent into a dimpled tapered fiber. Another employed
version of the system consists in coupling the light into and
out of the cavity with a fiber taper loop. When the dimpled
fiber is close enough to the OM cavity under study, light is
coupled evanescently from the fiber to the cavity so that we
can characterize both the transmission and reflection spectra,
shaded/highlighted in red and blue, respectively.

Tunable 
Laser

1 2

3

EDFA

PD1

RSA

Dimple taper

OM cavity

MZM
PC PC

PD2

Scope

OSA
EDFA

Switch

VOA

SG

Mixer FilterAmplifier

FIG. 6. Schematic of the experimental setup used in the multimode
experiment lasing.

The transmitted signal is first sent to a variable optical at-
tenuator (VOA), where it is photodetected (PD1) to monitor
the optical resonance with an oscilloscope (‘Scope’). The re-
flected signal is photodetected after the circulator via a 12
GHz Photodetector (New Focus 1544-B DC-Coupled NIR
Fiber-Optic Receiver) (PD2) and then filtered with a band pass
filter (Mini-Circuits VBFZ-4000-S+). This filter is used to
suppress the modulated frequency ωRF in the detected electri-
cal signal which would overlap with the difference tone. Once
the low frequency range has been filtered, the signal is elec-
trically amplified (Miteq MPN4-02001800-23P) and divided
(Mini-Circuits 15542 ZFRSC-42) in order to feed the two in-
put ports of an electrical mixer (MACOM M63C), where the
difference and sum tones of the two lasing mechanical modes
P1 and P2 are created. Finally, the resulting signal is ana-
lyzed with a radiofrequency spectrum analyzer (RSA). The
RSA used at AMOLF was a MXA Signal Analyzer N9020A
and at NTC a Aniritsu MS2850A Signal Analyzer. All the
phase noise measurements presented in this work were ob-
tained with the latter one. Real-time spectrograms of the spec-
trum versus time were acquired on both.

To reach the MMO regime the experiment was performed
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P2

P1

NOMINAL SEM RETRIEVED

FIG. 7. Comparison of the mechanical mode profile of the nominal
structures and the final fabricated profile structure for the two me-
chanical modes involved in the experiments.

as follows: First, the difference frequency between the two in-
volved mechanical modes was characterized at different laser
wavelengths. Next, this difference frequency was set as the
modulation frequency of the laser driving the cavity, and it
was kept constant in the rest of the experiment. Finally, a
sweep of the laser wavelength on the blue-detuned side of
the resonance was performed, reaching in this way the self-
oscillation regime in the MMO state.

The difference tone Ω2−Ω1 is also measured with this ex-
perimental setup to confirm the mode-locking between P1 and
P2. This is achieved by sending the detected signal through
the microwave mixer. Using a control measurement, we ver-
ified that the filter fully suppresses the (low-frequency) opti-
cal modulation frequency recorded by the photodetector, such
that the measured difference-frequency signal was only re-
lated to the mixing of the two GHz-frequency signals of the
oscillators P1 and P2.

IX. MECHANICAL MODE CHARACTERIZATION

Because of fabrication imperfections, the final structures
differ from the nominal ones. In order to ensure that the
measured mechanical modes were still located in the middle
region of the cavity, a calculation of the mechanical modes
was performed using a profile retrieved from a Scanning Mi-
croscopy Image (SEM). In Fig. 7 both the theoretical mechan-
ical mode profile of the nominal structure and the real profile
fabricated structure are compared. Here, we can see simi-
larity between the two profiles of the mechanical modes in
both cases. Regarding the mechanical properties of the sys-
tem, from the thermally-transduced mechanical mode mea-
surements, the linewidths of the involved mechanical modes
are Γ1/2π=(2.7±0.2) MHz and Γ2/2π=(2.26±0.12) MHz
and the optomechanical coupling rates g1/2π=(606±14) kHz
and g2/2π=(687±16) kHz.
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FIG. 8. Modulation frequency scan. (a) Overview of the upconver-
sion of the modulation tone around Ω2 −Ω1. (b) Close view of the
scan of the modulation tone around P1. (c) Example of the different
fit contributions in the overlap between P2 and the lower sideband.
(d) Evolution of the amplitudes of P1, P2 and the lower sideband as
a function of the modulation frequency tone.

X. MODULATION FREQUENCY SCAN

Once P1 or P2 is in the lasing state, an upconversion of
the drive modulation tone occurs. This means that the drive
tone gives rise to a lower and an upper sideband of the las-
ing tone in the optical modulation spectrum. This can be seen
in Fig. 8(a), which shows many spectra (colored from black
to red) that are taken while varying the modulation frequency
around the difference frequency of P1 and P2. A close view of
this scan is shown in Fig. 8(b). Here, we can see that for mod-
ulation frequencies around Ω2−Ω1, the lower sideband (LS)
overlaps with the mechanical mode P1. In order to observe
whether the mechanical modes P2 or P1 experience a change,
we analyzed the amplitude of those modes and the lower side-
band. It has to be noted that in the case of the overlap be-
tween P1 and the lower sideband, we have performed a fit of
a Lorentzian in the case of the thermally driven mechanical
mode P1 and a fit of a Gaussian in the case of the lower side-
band driven by modulation tone as can be seen in Fig. 8(c).
We find that the linewidth of the Lorentzian (P1) is never nar-
rowed while the modulation sideband of P2 is scanned in and
out of resonance with mode P1. This shows that the MMO
state cannot be reached from the SSO state. The resulting
evolution of both P1, P2 and LS amplitudes are presented in
Fig. 8(d).



8

SSO
1/f 01/f 2

1/f 3

-120

-100

-80

-60

-40

-20

0

-120

-100

-80

-60

-40

-20

0

100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

Frequency offset

L(
f) 

[d
Bc

/H
z]

L 
(f)

 [d
Bc

/H
z]

(a) (b)

Frequency offset 
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

P1 SSO
P2 Thermal

P1 SSO
P2 SSO
P1 MMO
P2 MMO

FIG. 9. (a) Phase noise L( f ) from a thermally driven mechanical
mode and a SSO mode. (b) Comparison of the two mechanical
modes P1 and P2 in the SSO and MMO states.

XI. PHASE NOISE MEASUREMENTS

The phase noise measurements from 100 Hz to 1 MHz fre-
quency offset were performed with an Aniritsu MS2850A Sig-
nal Analyzer, as mentioned above. A measurement of the
phase noise of a mechanical mode thermally driven and a SSO
mode was performed in order to be able to distinguish both
situations. These measurements are presented in Fig. 9(a) for
the case where P1 is self-oscillating. Here, we can see an
appreciable difference between these two cases as the ther-
mally driven mode had a very low amplitude, thus resulting in
a huge contribution of frequency noise sources related to the
white phase noise.

On the other hand, Fig. 9(b) shows a comparison of the
phase noise for all the cases of the mechanical modes P1 and
P2. P1 SSO and P2 SSO were taken when the correspond-
ing mechanical modes were in the self-oscillation state and
P1 MMO and P2 MMO were taken when both of them were
simultaneously oscillating. As discussed in the main text,
the most interesting feature arises in the low frequency offset
regime, where we can see a difference in the phase noise from
SSO and MMO. For all frequencies below ∼10 kHz (where
the white noise background is insignificant), the phase noise
improves when the two mechanical modes are in the multi-
mode regime. For these frequencies, the phase noise has a
largest contribution related to flicker frequency noise, judging
from the slope of this curve.

XII. ALLAN DEVIATION CALCULATION

The calculation of the Allan deviation σy(τ) was performed
in two different ways. For small averaging times τ, the param-
eter was derived from the phase noise data as [4]:

σy(τ) =

√∫ ∞

0

4 f 2L( f )
f 2
c

sin4(πτ f )
(πτ f )2 d f , (13)

where L( f ) is the measured phase noise and fc the carrier
frequency of the oscillator under study.

Figure 10(a) shows the common SSB phase noise L( f ).
However, the most common quantity to describe the oscil-
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FIG. 10. P2 SSO Noise type contributions. (a) Phase noise L( f ). (b)
Phase noise Sϕ( f ). (c) Frequency noise Sy( f ). (d) Allan deviation
σ(τ). The phase noise fit contributions described by Leeson’s model
for the frequency and time domain are indicated with dashed lines.

lator phase noise is Sϕ( f ) which can easly be derived as
Sϕ( f ) = 2L( f ). In order to derive σ(τ) an auxiliary pa-
rameter Sy( f ) is also needed, which is related to the physical
parameter Sϕ( f ) as

Sy( f ) =
f 2

f 2
c

Sϕ( f ). (14)

The phase noise shows the typical dependencies, with
1/ f 3 (flicker frequency noise, lower part of the spectrum
Fig. 10(a,b)), 1/ f 2 (white frequency noise, upper part of the
spectrum in Fig. 10(a,b)) and white noise 1/ f 0, which are in
good agreement with the general phase noise described by the
Leeson’s model [5, 7].

Besides the phase noise as a measure about the stability
of a signal, we can also study the root mean square (RMS)
jitter (JRMS). It can be obtained by integrating the phase noise
power data as [4]:

JRMS =
1

2πν0

√
2
∫ f2

f1

10L ( f )/10d f (15)

where f1 and f2 are the start and stop frequency, respectively.
On the other hand, for the long-term stability another ap-

proach was followed, in order to characterize the frequency
drift of our oscillators. Besides the approximation of the cal-
culation of the Allan deviation from the phase noise, this sta-
bility measurement can also be described as [6]

σy(τ) =

√√√√ 1
2M

M−1

∑
i=0

(yi+1 − yi)2 (16)
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where M = T/τ − 1 and yi = (〈 f1(t0 + iτ)〉τ − fc)/ fc.
Here, 〈 f1〉τ is the average frequency of the system over the
interval τ.

In our experiment, the measurement of the evolution of the

frequency as a function of time was performed with a real time
electrical spectrum analyzer over a total measurement time of
1 s and a timing step around 1 ms.
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