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1Department of Physics, University of Malta, Msida MSD 2080, Malta
2Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France
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I. CORRECTIONS TO THE POWER SPECTRAL DENSITY
OF HIGHER-ORDER FLOQUET MODES

The experimentally recorded spectra show additional im-
balance of the modulation sidebands which cannot be ex-
plained in terms of the leading order description. Therefore,
we inspect the linearized fluctuation dynamics
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The periodic mean field α(t) = ∑n ᾱne−inΩmodt allows to ex-
pand the fluctuation dynamics in terms of Floquet modes
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with χ̃−1
me,m = i(Ωj − mΩmod) + Γj/2. Restricting to â(0)

results in Eq. (5) in the main text. Including the higher order
fluctuation modes results in the Fourier transform
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which shows that the optomechanical interaction alters the
optical detuning and decay rate by χ−1

OS,pj = χ−1
OM,j0 +

χ−1
OM,j(ω + pΩmod) where the former contribution is fre-

quency independent and leads to the static optical spring
effect covered in the main text. The latter contribu-
tions however make the effective detuning ∆̃(ω) = ∆̄ +

∑j,p |ᾱp|2Im(χ−1
OM,j(ω + pΩmod)) and decay κ̃(ω) =

κ +∑j,p 2|ᾱp|2Re(χ−1
OM,j(ω + pΩmod)) frequency dependent

which will also be reflected in the accessible power spectral
density of the output field
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These effects modify the cavity density of states and lead to
a change of the apparent imbalance of the mean field ampli-
tudes |αn|2 displayed by the power spectral density. These
contributions were not included in the numerical analysis of
the experiment as they made the numerical fitting procedure
unstable.

II. THERMO-OPTIC EFFECT AND THERMALIZATION
TIME

The physical origin of the thermo-optic effect in our exper-
iment is the temperature growth in the material induced by
light absorption which is responsible for a significant shift of
the dielectric index, the elastic properties, and consequently
the cavity geometry. In an optical cavity, this effect is en-
hanced such that it can red-shift the cavity resonance fre-
quency. If the input field intensity passes a certain threshold,
the resonance lineshape becomes bistable. Such behavior can
be evidenced by scanning forward and backward the laser fre-
quency over the resonance, or equivalently, by sweeping up
and down the input laser intensity.

We use a tunable laser and inject light into the waveguide
through the aligned injection fibers. The output laser field
is sent to a low-power photodetector and the DC response is
checked on an oscilloscope. Therefore, the waveguide trans-
mission is now triggered in real-time, provided that the trans-
mission can be re-normalized. The input power is estimated
by measuring the off-resonance transmission ζ ≈ 0.1 of the
integrated waveguide and assuming the injection and the col-
lection efficiency to be equal. The input power is therefore
Pin =

√
ζPinj with the optical power sent in the injection

fiber Pinj. For low power the observed transmission dip can
be fitted with the linear transmission expression such that the
internal and external Q-factors are determined. In Fig. 1 (a),
with Pin = 325 µW, we find Qi ≈ 4400 and Qw ≈ 9500.
This corresponds to the internal loss rate of κi ≈ 2π × 43.3
GHz and external loss rate of κw ≈ 2π × 20.2 GHz. The
measurement is reproduced using both forward and backward
scans of the laser wavelength at Pin ≈ 1.3 mW. We fit the
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FIG. 1. a) Spectral transmission response using CW laser with in-
put power Pin ≈ 325 µW. The data (grey dots) are fitted with a
CMT model (red line). b) Idem using Pin ≈ 1.3 mW. Here both
forward and backward scans evidence an hysteretic behaviour due to
thermo optic nonlinearity. c) Averaged dynamical response of the
photonic mode under 10 kHz square modulation of the input laser
set to the bistability center. Measurements (black dots) are fitted
with ring-down and built-in exponential functions (red) returning a
heating time of 4.4 µs.

data with a nonlinear CMT model implementing a linear de-
pendence of the resonance wavelength with the cavity temper-
ature. Although the fit accurately matches with the width of
the observed dip, and also retrieves the presence of a bistable
region, we note a disagreement in the size of the bistability.
We attribute this discrepancy to a too large scanning speed of
the laser wavelength. In practice, it is set at 10 nm/s in order
to prevent oscillations in the laser output power, which would
have corrupted the measured transmission. This results in an
averaging effect of the transmission near the bistability edges.
In the experimental data, the jumps of the optical states are
not abrupt as expected, but follow the photodetector response
lifetime (≈ 6 ms).

In the thermo-optic bistability, the optical resonator intra-
cavity intensity is likely to switch stable state due to exter-
nal perturbation such as e.g. noise or input field modulation.
The switching time τs is given by the thermalization time of
the resonator. Under sufficiently strong external modulation,
the resonator can switch periodically, at the modulation fre-
quency. However if the latter is higher than a certain cut-
off frequency, given by (2τs)−1, the resonator cannot switch
twice a modulation period. This cut-off frequency therefore
defines a limitation for the processes relying of thermo-optic
nonlinearity. In order to estimate the switching time τs, the
input laser is modulated at sufficiently low-frequency for the
transition regime to be observed. For this purpose, the laser
wavelength is set at the center of the bistability (λ = 1566.75
nm) and modulated in the MZM with a square signal carrying
amplitude Vmod = 2 V and frequency ωmod = 2π× 10 kHz.
At the waveguide output, a fiber splitter allows to trigger the
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FIG. 2. Experimental output spectrum of the cavity for varying de-
tuning ∆ with Pin = 325µW. As the drive approaches resonance the
mechanical frequency is minimal which can be attributed to the de-
crease of elastic moduli of InP.

transmitted signal via a fW sensitive photodetector.
Using a modulation depth d = 0.89 and frequency Ωmod =

2π × 10 kHz, we record the optical output and average hun-
dreds of modulation periods. The data is shown in Fig. 1(c).
Here, the optical resonator intra-cavity field switches from
the cold state (high transmission) to the hot state and then
returns back to the cold state at half a cycle following an
exponential decay. We fit the data with a function f (t) =
A exp(−t/τs) + B which provides the thermalization time
τs ≈ 4.4 µs. Following the above discussion, we deduce
that the corresponding cut-off frequency ωcut-off = γth =
2π × 113.6 kHz.

In addition to the change of the refractive index, light ab-
sorption induced temperature changes also affect the elastic
properties of InP. In particular, all elastic moduli—Young’s
modulus, bulk modulus, and shear modulus—decrease with
rising temperature [2] and consequently makes heated InP ma-
terial easier to compress. This change of the elastic moduli
can be experimentally probed by a change of the mechani-
cal frequency for increasing photon absorption. The heatmap
in Fig. 2 shows the power spectral density of the optical out-
put for varying detuning ∆ with Pin = 325µW. As the de-
tuning is swept towards resonance (∆ = 0), the cavity will
host more photons and hence maximize their absorption by
the cavity. This will result in maximal temperature at reso-
nance and Fig. 2 shows that mechanical frequency is minimal
in accordance with the material’s softening. The heating of
InP material related to photon absorption takes place in the
thermal modes [3, SI p. 13] within the L3 defect cavities and
thus in a very localised manner. Noting that the InP mate-
rial forming the cavity can only expand freely in the direction
perpendicular to the membrane illustrated in Fig. 1(a) of the
main text. Any expansion of the heated InP material within
the remaining two dimensions will cause stress onto the sur-
rounding InP material in the photonic crystal. By virtue of
Newton’s laws, the surrounding material will hence react with
stress onto the L3 defects for any expansion that is not normal
to the membrane. In summary, stress that is caused by the sus-
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pension of the cavity upon expansion in combination with the
softening of the material under heating can overcome ther-
mal expansion for a sufficiently large temperature gradient.
This can lead to an overall red-shift of the cavity resonance
as depicted in Fig. 1 even though the differential cavity shift
at the work point gT can be a blue-shift (gT > 0). In gen-
eral, the differential cavity shift gT = ∂ωop/∂T is a smooth
function of temperature and can change sign according to the
softening mechanism. From room temperature to an interme-
diate temperature where the stress caused by the suspension
of the cavity overcomes the stress by thermal expansion, the
cavity will accumulate a red-shift. If this shift is larger than
the accumulated blue-shift from the intermediate to the final
temperature, it will result in an overall red-shift of the cavity
resonance even though the differential cavity shift at the final
temperature (gTgabs/γth > 0) is a blue-shift.

Additionally, Fig. 2 illustrates that the mechanical fre-
quency undergoes a noticable shift of 80 kHz on optical res-
onance which could also be attributed to optomechanical or
photothermal backaction. Employing the optical linewidths,
the mechanical frequency and the dispersive optomechanical
coupling, the theory Ω′j(Ωj) predicts a shift below 1 Hz which
is nearly four orders of magnitude below the shift observed in
the setup. Moreover, the mechanical linewidth Γ extracted
for the fits is constant with the detuning. This is an indica-
tion that dynamical backaction is negligible in this optome-
chanical system and can also be used to outrule photothermal
backaction as summarized in Eq. (7) of [4]. Employing the
change of the mechanical linewidth resulting from the pho-
tothermal elastic backaction effect Γeff = Γ1(1 + δΓ/Γ1) =
Γ1{1 + [τth/(1 + Ω2

1τ2
th)] × (2βR/mcΓ1)(dPAbs/dx)} al-

lows us to set a boundary to the second summand. This sum-
mand describes the relative change of the linewidth which is
limited by the measurement imprecision in our experiment.
For the purpose of giving an upper limit on the expected fre-
quency shift, the relative imprecision of the linewidth can be
set to unity even though it is below 10 % in the concrete case
of Fig. 2. This allows to estimate the expected frequency shift
Ω2

eff = Ω2
1[1 − (δΓ/Γ1) × (Γ1/Ω2

1τth)] according to pho-
tothermal backaction [4]. With the upper boundary of relative
uncertainty in linewidth of unity the frequency shift amounts
to ∆Ω = Ω1 −Ωeff = Ω1[1− (1− Γ1τ−1

th /Ω2
1)

1/2]. Em-
ploying τth = τs along with the mechanical frequency and
linewidth predicts a frequency shift lower than 80 Hz based on
photothermal backaction and thus three orders of magnitude
lower than the observed frequency shift in Fig. 2. In summary,
ruling out dynamical backaction indicates that this frequency
shift originates in a thermo-mechanical effect as the above dis-
cussed softening mechanism.

III. MODULATION DEPTH INFLUENCE

We record the noise spectrum while varying the modula-
tion voltage from 0 to 2 V. The heatmap shown in Fig. 3 ev-
idence the progressive apparition of two pairs of sidebands
around the mechanical resonance (Ω1 = 2π × 4.340 MHz).
The sidebands start to display imbalance amplitudes around
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FIG. 3. Experimental record of the power spectral density for Pin =
1.3 mW as a function the modulation depth showing the appearance
of the first pair of sidebands around d = 0.45 and the appearance of
the second pair around d = 0.75 and an imbalance in the amplitude
of the first pair of sidebands (with Ωmod = 2π × 50 kHz).

d = 0.75. The thermo-optically induced imbalance of the
modulation sidebands for large modulation depths can be em-
ployed for an amplification of the Floquet mechanism. Eq. (8)
of the main text implies that an increase of the sideband am-
plitudes leads to an increased coupling of the Floquet mecha-
nism. We therefore explore the dependence of the amplitude
numerically. We employ the same parameters as in Fig. 2 (c)
of the main text except for an even larger modulation depth
d = 2.0. These parameters lead to an inverted sideband im-
balance as displayed in Fig. 4. In contrast to the large modula-
tion frequency case, the positive sideband is increased for low
modulation frequencies. We therefore find the surprising re-
sult that thermo-optical effects can be used to suppress and to
amplify the coupling strength that enables the Floquet control.

IV. NUMERICAL SIMULATION PROCEDURES
DEMONSTRATING BISTABILITY CONTROL

The numerical procedure that we use to generate the sam-
ple trajectories of our model displayed in Fig. 3 (b) of the
main text employs the Euler–Maruyama scheme [1] for the
dynamics of the mean fields
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where we choose the parameters of the two mechanical modes
(N = 2) as described in the main text, namely Ω1 = 2π× 10
MHz, Γ1/Ω1 = 0.1, g1 = 2π × 151.630 Hz (exact numer-
ical value: 952.717 Hz), Ω2 = 2π × 11 MHz, Γ2/Ω2 =
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FIG. 4. Numerical evidence of the inversion of the sideband imbal-
ance for low modulation frequencies with modulation depth d = 2.0.
The increased amplitude of the first positive sideband proves that
the thermo-optical effect can suppress or amplify the Floquet control
mechanism.

10−2, g2 = 2π × 8.390 Hz (exact numerical value: 52.717
Hz) as well as the optical cavity ∆ = 2π × 26.200 MHz (ex-
act numerical value: 164.619 MHz), and κ = 2π × 14.038
MHz (exact numerical value: 88.0211 MHz). This places the
numerical example in the unresolved sideband regime. The
Gaussian noise terms we employ are described by their statis-
tical momenta, i.e. their mean 〈ξs(t)〉 = 0 taken to be zero
thoughout the analysis and time correlation 〈ξr(t)ξs(t′)〉 =
δrsλsδ(t− t′) for all 2(N + 1) variables r and s denoting the
real Re(z) = R(z)/2 and imaginary Im(z) = I(z)/2 parts of
α and β j with the variance of the Gaussian noise λs gauging
the strength of the random forces. Throughout our simula-
tions we employ λRe(α) = λIm(α) = 1 mimicking cavity shot
noise as well as noise consistent with the zero point fluctua-
tions of β1, described by λRe(β1)

= λIm(β1)
= 1. The noise in

the control oscillator is parametrized by λRe(β1)
= λIm(β1)

=
8001. We generate an initial condition of the system at the end
of the bistable region by evolving the system without noise
starting from rest α(t = −2t0) = β j(t = −2t0) = 0 for
t0 = 50 µs and constant drive with E0 = 2π × 1449427.676
MHz (exact numerical value: 9107022.675 MHz), T0 =
(1 − i)/2, φ0 = 0. To generate realistic initial conditions,
we then repeat the procedure with noise for another t0 = 50
µs. After the initial procedure to approach the bistability edge
of the system, we then drive with T0 = (1 − iJ0(d))/2,

T±1 = −J1(d) and switch on the intensity modulation with
d = 1.875× 10−5 for t = 200 µs. After the modulation has
been probed we evolve the system without modulation for an-
other 50 µs to make sure that simulations that were changing
steady state have sufficient time to converge and surpass our
switching criterion. The bistable state we start from is char-
acterized by a mean number of quanta of β1 around 46500
whereas the other state is sustains approximately 79000 oscil-
lator quanta. Thus, switching occurs if the mechanical oscil-
lator quanta of β1 surpass 60000 at the end of the simulation.
The step size δt = 0.0001µs throughout every simulation in
order to numerically converge. We conducted 50 such runs
for modulation with Ωmod = 2π × 1 MHz which showed no
switching event and another 50 runs with Ωmod = 2π × 11
MHz which showed two switching events. This result coin-
cides with the analytic result that intensity modulation at the
frequency of the control oscillator at Ω2 = 2π × 11 MHz is
resonant and can lead to switching whereas off-resonant op-
tical modulation does not affect the bistable state of b̂1. We
conducted another set of deterministic simulations of

α̇ =
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−i
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with E0 = 2π × 1449428.344 MHz (exact numerical value:
9107026.875 MHz), D = 2π × 246.69 MHz (exact numeri-
cal value: 1550 MHz), d = 10−4 and the system parameters
used in the prior simulation. The numerical procedure con-
sists of the initialization process from rest to the parameters at
the bistability edge for t0 = 50 µs with D = 2π × 0 MHz
followed by a simulation for 500 µs for the respective phase
φ2 and Ωmod. The threshold criterion is equivalent to discrim-
inating the steady states by the mean photon number |α|2. Fig
3 (b) of the main text shows that one steady state is character-
ized by a mean photon number of 3× 109 and the other steady
state attains a mean photon number of 5× 109. Thus our dis-
crimination criterion is to attribute a photon number smaller
than 4× 109 after the evolution protocol to the initial steady
state and a photon number larger than 4× 109 to a switching
event leading to the phase diagram of Fig. 3 (c) in the main
text. The time requirements of the numerical algorithm limit
the maximal simulation time per data point leading to fluctua-
tions in the phase diagram because the respective simulations
are undergoing the transition but are still below the threshold.
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